You are reading the article Data Analytics Vs Data Analysis updated in September 2023 on the website Speedmintonvn.com. We hope that the information we have shared is helpful to you. If you find the content interesting and meaningful, please share it with your friends and continue to follow and support us for the latest updates. Suggested October 2023 Data Analytics Vs Data Analysis
Differences Between Data Analytics vs Data AnalysisData analysis involves investigating, cleaning, transforming, and training the data to find helpful information, recommend conclusions, and help decision-making. Data analysis tools are Open Refine, Tableau Public, KNIME, Google Fusion Tables, Node XL, and many more. Analytics utilizes data, machine learning, statistical analysis, and computer-based models to get better insight and make better decisions from the data. Analytics is “transforming data into actions through analysis and insight in the context of organizational decision-making and problem-solving.” Analytics is supported by many tools such as Microsoft Excel, SAS, R, Python(libraries), tableau public, Apache Spark, and Excel.
Head to Head Comparison Between Data Analytics and Data AnalysisStart Your Free Data Science Course
Hadoop, Data Science, Statistics & others
Key Differences Between Data Analytics and Data AnalysisBelow are the lists of points that describe the critical Differences Between Data Analytics and Data Analysis:
Data analytics serves as a conventional and versatile approach utilized in various sectors including healthcare, business, telecommunications, and insurance, to extract insights from data and inform decision-making processes.
Data analytics consists of data collection and, in general, inspecting the data and whether it has one or more uses. In contrast, Data analysis consists of defining, investigating, and cleaning the data by removing Na values or any outlier present, transforming the data to produce a meaningful outcome.
To perform data analytics, one has to learn many tools to accomplish necessary actions on data. One must know R, Python, SAS, Tableau Public, Apache Spark, Excel, and many more to achieve analytics. For data analysis, one must have hands-on tools like Open Refine, KNIME, Rapid Miner, Google Fusion Tables, Tableau Public, Node XL, Wolfram Alpha tools, etc.
The data analytics life cycle consists of Business Case Evaluation, Data Identification, Data Acquisition & Filtering, Data Extraction, Data Validation & Cleansing, Data Aggregation & Representation, Data Analysis, Data Visualization, and Utilization of Analysis Results; as we know that data analysis is a sub-component of data analytics. Hence, the data analysis life cycle also comes into the analytics part; it consists of data gathering, scrubbing, data analysis, and interpreting the data precisely so that you can understand what your data want to say.
Whenever someone wants to find out what will happen next or what will be next, we go with data analytics because data analytics helps predict future value. Data analysis performs on the past dataset to understand what has happened so far from the data. Data analytics and data analysis are both necessary to understand the data. One can help estimate future demands, and the other is important for researching data to look into the past.
Data Analytics vs Data Analysis Comparison TableBasis of Comparison
Data Analytics
Form Data analytics is ‘general’ form of analytics that is used in businesses to make decisions from data-driven data. Data analysis is a specialized form of data analytics used in businesses to analyze data and take some insights into it.
Structure
Data analytics consists of data collection and inspection in general, with one or more users. Data analysis consisted of defining data, investigating, cleaning, and transforming the data to give a meaningful outcome.
Tools Many analytics tools are in the market, but mainly R, Tableau Public, Python, SAS, Apache Spark, and Excel are used. For data analysis, professionals utilize tools such as OpenRefine, KNIME, RapidMiner, Google Fusion Tables, Tableau Public, NodeXL, and WolframAlpha.
Sequence Data analytics life cycle consists of Business Case Evaluation, Data Identification, Data Acquisition & Filtering, Data Extraction, Data Validation & Cleansing, Data Aggregation & Representation, Data Analysis, Data Visualization, and Utilization of Analysis Results. The sequence followed in data analysis is data gathering, data scrubbing, analysis of data, and interpreting the data precisely so that you can understand what your data want to say.
Usage In general, data analytics enables organizations to find masked patterns, identify anonymous correlations, understand customer preferences, analyze market trends, and extract other necessary information that helps make more informed decisions for business purposes. Data analysis can be used in various ways. One can perform analyses like descriptive, exploratory, inferential, and predictive analyses and take useful insights from the data.
Example Let’s say you have 1gb customer purchase-related data for the past 1 year; now, one has to find what our customer’s next possible purchases are; you will use data analytics for that. Suppose you have 1gb customer purchase-related data from the past 1 year and are trying to find what happened so far. That means in data analysis, we look into the past.
ConclusionToday, organizations are experiencing a rapid increase in data usage, with a vast amount of data being collected across various sources such as customers, business processes, application users, website visitors, and stakeholders. This data is processed and analyzed to uncover patterns, gain insights, and make informed decisions. Data analytics encompasses a range of tools and techniques, both qualitative and quantitative, that leverage this collected data to generate valuable outcomes.
Recommended ArticlesWe hope that this EDUCBA information on “Data Analytics vs Data Analysis” was beneficial to you. You can view EDUCBA’s recommended articles for more information.
You're reading Data Analytics Vs Data Analysis
Update the detailed information about Data Analytics Vs Data Analysis on the Speedmintonvn.com website. We hope the article's content will meet your needs, and we will regularly update the information to provide you with the fastest and most accurate information. Have a great day!